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The benefits of cycloaddition reactions, which are so amply 
demonstrated in the Diels-Alder reaction, stimulate the search 
for such processes to rings other than six membered. In seeking 
to exploit the availability of a reactive trimethylenemethane metal 
complex,1'2 we considered the possibility that such a fragment 
might be of general use as a building block for [2« + 3] cyclo-
additions. We have established the feasibility of the process for 
the case of n = I.3 Utilizing tropone as an acceptor creates 
nine-membered rings (i.e., n = 3).4 In this paper we consider the 
case of n = 2 within the context of a polyhydroazulene synthesis.5 

The possibility of a cycloaddition to create a seven-membered 
ring had been noticed in the reaction of dimethyl (£',£')-muconate 
which gave a 1:1 mixture of the five- and seven-membered rings 
(eq I).6 Geometrically restricting the diene to a cisoid confor-
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mation as in 2 should enhance the formation of the seven-mem­
bered ring (eq 2). The problem then became the availability of 
substrates such as 2. Our recent discovery of the cyclization of 
enynes to 1,2-dimethylenecycloalkanes7 suggested the overall 
sequence shown in eq 2 whereby construction of the bicyclic system 
occurs by two sequential palladium-catalyzed cyclizations. 
Considering the importance of polyhydroazulenes as a core ring 
system of so many natural products, we focused our efforts on 
the case of n = 2 which constructs an octahydroazulene. 

Our initial work on the enyne cyclization suggested that alkyl 
substituents at the acetylene terminus strongly inhibited the re­
action.7 For the present purposes, we explored the role elec­
tron-withdrawing groups have.8 Cyclizations proceeded in modest 
to poor yields by using our standard conditions of 5 mol % Pd-
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(OAc)2 and 10 mol % of a triarylphosphine in benzene. Use of 
Pd(OAc)2 alone proceeded satisfactorily in some cases as illus­
trated in entry 3 of Table I. Best results were obtained by using 
7V,iV'-dibenzylideneethylenediamine (4) as ligand.9 For example, 
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switching the ligand from triphenylphosphine to no ligand to 4 
in the case of entry 1 increased the yield of the diene from less 
than 20% to 49% to 83%. 

The sulfone substrate of entry 5 proved to be particularly 
troublesome, giving the desired diene in less than 20% yield over 
a broad array of conditions. Concomitant work in our labora­
tories10 on the use of the palladiacyclopentadiene 5" as a catalyst 
for enyne cyclizations induced us to examine its effect here. 
Subjecting the acetylenic sulfone (entry 5, Table I) to 5 mol % 
of 5 in 1,2-dichloroethane gave a 73% yield of the desired diene. 

With a facile synthesis of the requisite dialkylidenecyclopentanes 
in hand, we turned our attention to the [4 + 3] cycloaddition. 
Generally, the diene and approximately 1.5 equiv of the Afunc­
tional conjuctive reagent 1 were subjected to approximately 5 mol 
% of a Pd(O) catalyst in refluxing THF. The catalyst was gen­
erated in situ by treating Pd(OAc)2 with triisopropyl phosphite. 
More reproducible results occurred when 2 equiv of tt-butyllithium 
(relative to Pd(OAc)2) was added as the reducing agent.12 

In all cases, the seven-membered ring products were the major 
to exclusive products as summarized in Table I. The major 
byproducts were the five-membered rings resulting from cyclo­
addition to the 7,5 double bond. The cycloheptene products have 
characteristic 1H NMR signals at 8 4.60-4.90 for the exocyclic 
methylene group and at <5 3.1-3.4 for the proton a to the ester 
group (<5 3.7-3.8 for the proton a to the sulfone). The carbonyl 
frequencies for the saturated esters appear at 1729-1740 cm"1. 
On the other hand, the five-membered ring byproducts exhibit 
1H NMR signals for the exocyclic methylene protons at 0.1-0.2 
ppm downfield of the corresponding signals for the octahydro­
azulene and for the olefinic proton a to the ester or sulfone at 
around 5 5.70 and 5.30, respectively. The unsaturated nature of 
the ester group in the cyclopentane products also is confirmed by 
the infrared frequency at 1704-1717 cm"1. 

To the extent that the (trimethylenemethane)palladium complex 
may be viewed as a 2-substituted allyl cation derivative, a concerted 
cycloaddition is feasible. However, formation of five-membered 
ring products in addition to the seven-membered ring products 
is taken as evidence for a stepwise process as outlined in eq 3. 
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Seven-membered ring formation is favored by the propensity for 
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Table I. Synthesis of Octahydroazulenes 
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entry enyne catalyst" 
isolated cycloaddition octahydroazulene isolated 

cyclopentane yield'' time, h" (diastereomeric ratio) yield'' 

1 A - = - C O 2 C H 3 5 mol % Pd(OAc)2, 6 mol % 4 

(1 h) 

2 \/—--co2CH,CH2Ph 5 mol % Pd(OAc)2, 6 mol % 4 
/ W (1 h) 

83% 

O2CH2CH2Ph g6% 

8.5 
CO2CH3 76% 

-CO 2CH 3 

5 mol % Pd(OAc)2 (5 h) TBOMSO 

TBOMSO 

-CO2CH3 5 mol % Pd(OAc)2, 6 mol % 4 
(1.3 h) 

°2Ph 5 mol % 5, 6 mol % Ph3P (6 h)» 

=-CO2CH3 5 mol % Pd(OAc)2, 6 mol % 4 
(1.2 W 
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"Unless otherwise stated, reaction performed at 0.5 M in benzene or benzene-rf6 at 45-50 0C. 'Reaction performed at 65-70 0C in 1,2-di-
chloroethane. cReaction performed at 40 0C for 1 h and then 60 °C for 0.2 h. ''Yield of product after chromatographic purification. All new 
compounds have been fully characterized spectrally and elemental composition established by high-resolution mass spectroscopy or combustion 
analysis. 'Pd(O) catalyst prepared in situ from approximately 5 mol % Pd(OAc)2, 35 mol % triisopropyl phosphite, and 10 mol % H-butyllithium in 
THF at room temperature. Reaction performed at about 0.2 M using a ratio of diene to TMM precursor of about 1:5.5. ^No n-butyllithium was 
employed to generate catalyst. *A 2.4:1 ratio of the seven- to five-membered ring products. * A 5,7:1 ratio of seven- to five-membered ring products. 
'Only seven-membered ring products. ; A 8.2:1 ratio of seven- to five-membered ring products. *A 36:1 ratio of seven- to five-membered ring 
products. 'A 19:1 ratio of seven- to five-membered ring products. 

polyenolates to alkylate at the a rather than h position (presumably 
a reflection of higher negative charge at the a compared to the 
8 position). On the other hand, entropy of activation favors five-
over seven-membered ring formation. The predominance of oc­
tahydroazulene formation suggests the charge distribution effect 
dominates. Increasing steric hindrance by increasing substitution 
on the five-membered ring of the diene acceptor generally enhances 
the selectivity for [4 + 3]- over [3 + 2]-type products. 

The adducts can be selectively elaborated. For example, the 
adduct of entry 4 may be chemoselectively oxidized to ketone 6 
(56% yield) by portionwise addition of benzyltriethylammonium 
permanganate1 3 to a methylene chloride solution of the octa­
hydroazulene and tetra-«-butylammonium periodate.14 The ketone 
6 corresponds to the equivalent of the cycloaddition of the 2-
oxyallyl zwitterion in a [4 + 3] mode. Exposure of 6 to tetra-
«-butylammonium fluoride at 0 0 C in T H F effects elimination 
to the diene 7 (65% yield). Ketone 6 can be envisioned as an 
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intermediate toward procurcumenol15 and diene 7 as an inter­
mediate toward helispendiolide.16 

Sequential palladium-catalyzed reactions provide a facile 
two-step synthesis of octahydroazulenes from acyclic precursors. 
Condensations involving a (trimethylenemethane)palladium in­
termediate now permit cycloaddition strategies to extend beyond 
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five-membered ring formation to seven- and nine-membered rings 
as well. 
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In the current renaissance of free radical chemistry,2 one of 
the most highly cherished canons arises from the conviction that 
"the cyclization of (a) 5-hexenyl radical (can) be used as a kinetic 
yardstick against which the rates of competing processes can be 
measured".3 Mechanistic studies of single electron transfer4 have 
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